THE PROMISE OF NERVE GROWTH FACTOR
Exciting New Approaches In Treating Alzheimer’s Disease

By Mark Tuszynski, M.D., Ph.D

Brain Derived Neurotrophic Factor (BDNF) is a naturally occurring protein and “growth factor” that helps neurons to function in a healthy brain, and facilitates electrical communication between neurons. BDNF is normally made in our brain circuits throughout life, but levels are reduced in Alzheimer’s disease (AD). Researchers have studied growth factors in other brain regions, and have often found that growth factors prevent cell death and stimulate cell function. So, beginning with laboratory animal models, we were interested in determining whether therapeutic application of BDNF to a brain region that is vulnerable in AD would prevent cell death, stimulate cell function, improve connections between cells, and improve learning and memory. Indeed, it did. (Continued on Page 2)

Dr. Tuszyński is a professor in Neurosciences at UCSD and Director for the Center on Neural Repair. He joined our Shiley-Marcos Alzheimer’s Disease Research Center in 1991.

Ben and Emmie Cagle can be considered Shiley-Marcos ADRC pioneer volunteers. Emmie received her diagnosis of probable Alzheimer’s disease (AD) in the Fall of 1984, and by early 1985 she and Ben were among the first to sign on as ADRC longitudinal study participants—she at number 14, and he as a control subject at number 27. By the time Emmie died of AD in 2003, the Cagles had shared full lives, marked by significant personal and professional achievements. For Ben, though, few of those achievements were as meaningful as his twenty-year role as Emmie’s primary caregiver. “It was a transforming experience,” Ben says of that period. Reflecting on the powerful bond resulting from his involvement (Continued on Page 3)
In our animal model research, we have targeted BDNF to regions of the brain that are important for memory, the entorhinal cortex and hippocampus. The entorhinal cortex and hippocampus are the first brain regions to degenerate in AD, so it is important to target them early to prevent or reduce disease progression and protect memory. When we learn new things, the entorhinal cortex and hippocampus are the brain sites that establish the new memories. Once the knowledge is learned, it is "transferred" from the entorhinal cortex and hippocampus to other brain regions, and stored in those regions. But the initial learning of new factual knowledge or experience (e.g., where did I leave the keys, what appointment do I have today) requires the entorhinal cortex and hippocampus. It is because AD strikes these regions early, that one of the first symptoms of AD is short-term memory loss.

To study the effects of BDNF, we either infused the BDNF protein into the entorhinal cortex, or used gene therapy vectors to deliver the growth factor into the brain. The most compelling evidence of a beneficial effect of BDNF was the observation that brain cell (neuronal) death was prevented in some types of animal models, and that connections between neurons (synapses) were improved in density by about 25%. We observed these types of effects in mice bearing genetic defects observed in human Alzheimer's patients; in rats subjects to brain lesions that ordinarily cause cell death; in aged rats that normally exhibit age-related atrophy of neurons; in aged monkeys that also normally exhibit age-related atrophy of neurons; and in monkeys subjected to brain lesions that ordinarily cause cell death. Thus, the effects of the growth factor on cell survival, connectivity, and function were confirmed in several different animal models.

Cognitive improvement was also observed in the mice, in aged rats, and in aged monkeys. These findings suggest that BDNF can indeed improve memory-related functions in the brain. The effect of BDNF in these animal models is potent. I am unaware of other therapies that prevent the death of neurons and stimulate brain connectivity (synapses) to the extent we observed with BDNF. An important question is whether we can harness these biological effects to treat AD in humans. Two key challenges in translating this work to humans include attaining adequate concentrations of growth factors in the brains of humans to prevent cell death, and sustaining these effects over time. Seeing positive effects of BDNF in animal models of AD is no guarantee that this approach will work in humans with AD. Animal models mimic some, but not all, aspects of human AD. Nonetheless, we are encouraged to pursue human testing based on the potency of the effects observed in animal models.
We are performing long-term safety studies of BDNF gene delivery now in animal studies. If these studies demonstrate safety, we anticipate possible human trials could begin in approximately two years. We hope to have a new therapeutic approach to potentially treat AD that works via a unique route compared to other AD therapies currently in clinical trials that primarily target amyloid protein. It is always better to have multiple ways of potentially treating a disease, and BDNF presents a new therapeutic opportunity. Ideally, BDNF therapy could be combined with other therapies to generate the most effective treatments.

This work builds on previous studies by our team and others, demonstrating the therapeutic affects of nerve growth factor (NGF) administered to patients with Alzheimer’s disease. NGF therapy aims to stimulate the function of specific cholinergic neurons, which are like the air traffic controllers of the brain, helping to direct the activities of cells in broad regions of the brain. In 2001, our team at UC San Diego Medical Center performed the first surgical implants of NGF genes into the brains of Alzheimer’s patients, with follow-up results showing these patients experienced a possible slowing in cognitive decline and increased metabolic function in the brain. The hope is that NGF will significantly enhance the quality and duration of function of cortical systems in the brain and meaningfully improve the lives of people with AD. The NGF studies continue today with Phase 2, multi-center studies currently underway across the country, including at our Shiley-Marcos ADRC (For more information on the NGF Phase 2 study at our Shiley-Marcos ADRC, please see the Clinical Trials section, Page 7). Any benefits of NGF therapy, however, will not be curative. Eventually, the effect of the NGF “boost” will be countered by the widespread death of neurons in the cerebral cortex as a result of advancing Alzheimer’s disease.

In contrast, BDNF acts directly on dying cells in specific memory circuits of the brain. In our animal research, we have shown that BDNF targets the cortical cells themselves, preventing their death, stimulating their function, and improving learning and memory. Thus, BDNF treatment can potentially provide long-lasting protection by slowing, or even stopping disease progression in the cortical regions of the brain that receive treatment. We will be certain to keep our Shiley-Marcos ADRC participants updated as we make progress in this exciting and promising area of research.
in Emmie’s day-to-day care, Ben says they “shared a lot of togetherness” and that he “would be a different person if I’d placed her.”

Facing the challenges of caregiving made Ben “fearless,” he says. “I have a lot of self-confidence as a result of those experiences. If I can manage that,” he adds in retrospect, “I can manage anything.”

Reflecting on the most meaningful aspects of caregiving Ben says, “it was the people—of course it was.” He recalls the happy times he and Emmie shared together at the Shiley-Marcos ADRC, the Institute for Research on Aging, and the George G. Glenner Alzheimer’s Family Center, and all the people they shared community with. “Our lives were built around those social interactions,” he says. For instance, when Emmie could no longer walk, Ben acquired a wheel chair and took her for strolls up and down their street every night. “That’s how we got to meet and talk with the neighbors,” he recalls. “I still talk to our friends on the street, and we’re friends because of her.”

From medical professionals to new acquaintances, the Cagles thrived on the relationships they forged not in spite of, but because of Emmie’s Alzheimer’s. An engineer and scientist by training, Ben tackled the more difficult challenges of caregiving with a scientific focus. When bedsores became an issue, he experimented with various solutions. When he found that rotating Emmie’s position every 2-3 hours proved a successful preventive measure, he undertook that procedure day and night. As Emmie’s AD progressed and the demands of her illness became greater, Ben never faltered, relying on his faith and his deep devotion to Emmie to ease the strain. “Support groups weren’t for me,” he explains. “But I never knew what it was like to be without God,” and in caring for Emmie “my greatest learning experience was to depend on God and not worry.”

Ben also acknowledges how fortunate he was that Emmie’s positive outlook never waivered. “She was never irritable, resistant, or antagonizing,” he says. “Luckily, she missed a few of those [behavioral] stages of Alzheimer’s. We always hugged and kissed,” notes Ben, “and to the end, she would respond with kindness.”

Emmie passed away in Ben’s arms, on March 24, 2003, just shy of their 54th wedding anniversary. These days, at age 87, Ben continues to find joy in his children, including the daughter he talks to daily, and he stays active with myriad activities. “So many blessings,” he says, “how can I count them?” As a church volunteer, a Scout Official, a member of the Board of Directors of Palomar Christian Conference Center, and a Shiley-Marcos ADRC research participant, Ben is living testimony of his philosophy that “the important thing in life is what you do for the world, not what you get.”
Robert Malinow, M.D., Ph.D., Professor of Neurosciences at the University of California, San Diego School of Medicine, has been named the first recipient of the Shiley-Marcos Endowed Chair in Alzheimer’s Disease Research in honor of Dr. Leon Thal.

Malinow, a world-renowned physician-scientist whose work focuses on the neurological connections at the foundation of memory and memory loss, was recognized at a reception in his honor hosted by Darlene Shiley at the La Jolla Country Club last Fall. Darlene Shiley and her husband, Donald Shiley, funded the chair in honor of her late mother, Dee Marcos. The chair was also named in honor of the late chair of neurosciences and director of the Shiley-Marcos Alzheimer’s Disease Research Center (ADRC), Leon Thal, M.D.

Malinow came to the UC San Diego School of Medicine in March 2008 from Cold Spring Harbor Laboratory, a private, non-profit research institution in New York, where he held the Alle Davis and Maxine Harrison Endowed Chair of Neurosciences since 1998. His research focuses on synaptic transmission and plasticity, learning, and memory. He received his medical degree from New York University and his Ph.D. degree from UC Berkeley. Malinow has received numerous awards including the MetLife Foundation Award for Medical Research. “For the past 20 years, I have studied the very basic properties of synapses—the connections between neurons in the brain —and how they change in strength when you learn something new or retrieve a memory,” said Malinow.

Because synapses and the underlying molecular signaling are critical to memory, Malinow and his research team study how exactly they work and what role synapses play in the memory loss associated with Alzheimer’s disease. They are looking at how beta amyloid – a protein fragment that may cause Alzheimer’s – affects synapses and could weaken them, preventing memories to be formed.

“We believe beta amyloid taps into the normal processes used by synapses in order to modify their circuitry,” Malinow said. “Too much beta amyloid likely weakens synapses, preventing them from forming new memories and eventually leads to lost synapses.” Using highly sophisticated electrophysiological techniques to record neuronal activity, Dr. Malinow was one of the first neurobiologists to examine the biologic consequences of amyloid beta-protein on neuronal function. His arrival at San Diego elevates UCSD into one of the premier centers studying synaptic physiology. Dr. Eddie Koo, Co-Director of the Shiley-Marcos ADRC states, “We look forward to seeing how Dr. Malinow’s laboratory continues to bring new insights into how the brain network is damaged in Alzheimer’s disease. Dr. Malinow is one of the very best synaptic neurobiologists working today and his laboratory has and will continue to bolster our efforts to understand the problem of synaptic dysfunction and synapse loss in Alzheimer’s disease. We look forward to involving him in the activities of the Shiley-Marcos ADRC, and in particular, how his studies might lead to treatments that minimize the damage to synapses and preserve memory and cognition.”
Clinical Trials

THERE ARE MANY NEW CLINICAL TRIALS AND RESEARCH PROTOCOLS ENROLLING AT THE SHILEY-MARCOS ADRC

If you are interested in participating or would like more information, please contact the Study Coordinator listed with each trial.

They can all be reached at the Shiley-Marcos ADRC - (858) 622-5800

There is no cost to participate in any of these research protocols

The Shiley–Marcos ADRC is under the direction of Douglas Galasko, M.D.

Clinical Trials Registry
Are you interested in clinical trials but don’t find one that suits you? You can now join our Shiley-Marcos ADRC registry to be placed on a list for future studies.

PARTICIPANTS CAN BE:

- Normal Controls
- Have a mild memory problem
- Be diagnosed with early-to-moderate Alzheimer’s

Call the Shiley-Marcos ADRC at (858) 622-5800

Nerve Growth Factor

PRINCIPAL INVESTIGATOR
Michael Raffi, M.D., Ph.D.

TIME INVOLVED
24 Months

DESCRIPTION
Nerve growth factor (NGF) research is a phase 2 double-blind, placebo controlled study. The purpose is to test the safety, tolerability, and effectiveness of a new experimental gene transfer drug called Cere-110 in those with mild-to-moderate AD. Studies suggest that NGF may help increase the survival of neurons that degenerate in AD. The ability of NGF to prevent brain cell loss in animal models of AD has led to delivering NGF to humans. In this study NGF is delivered directly by surgical insertion into the region of the brain where cell death occurs. Gene therapy is experimental and has not yet been approved by the FDA.

REQUIREMENTS

- 55-80 years old
- On stable AD medication for 3 months
- Have a study partner for all visits
- Fluent in English
- Are in general good health

CONTACT
Christina Gigliotti, Ph.D. at (858) 622-5800 and ask for the "Nerve Growth Factor Study"

cgigliotti@ucsd.edu

R.A.G.E.

Inhibitor (R.I.)

PRINCIPAL INVESTIGATOR
Jody Corey-Bloom, M.D., Ph.D.

TIME INVOLVED
22 Months

DESCRIPTION
Basic research studies found that blocking the interaction of amyloid beta protein and a receptor called Receptor for Advanced Glycation Endproducts (RAGE) led to a decrease in amyloid deposition. In this study, researchers will test whether a novel drug that acts as a RAGE inhibitor (RI) slows the progression of Alzheimer’s disease as well as behavioral problems that may occur. Participants will be randomly assigned to one of three groups: one group will receive a high dose of RI, a second group will receive a lower dose of RI, and the third group will receive an identical placebo (inactive pill).

REQUIREMENTS

- Age 50 or older
- Have mild-to-moderate AD
- Are not diabetic (Type 1 or 2) and do not have a history or symptoms of autoimmune disorders
- Able to see and hear well
- Able to read and write in English or Spanish
- Have a reliable caregiver

CONTACT
Karen Wetzel, M.P.A.S., PA-C at (858) 622-5800 and ask for the "R.A.G.E. Inhibitor Study"
kwetzel@ucsd.edu

Biomarkers

In Aging, MCI, and Alzheimer’s Disease

PRINCIPAL INVESTIGATOR
Douglas Galasko, M.D.

TIME INVOLVED
Two visits per year for 5 years

DESCRIPTION
This study will measure levels of a number of different proteins in cerebrospinal fluid (CSF) and in blood in order to compare these biomarker levels amongst people who have normal cognitive ability, mild memory problems, or early Alzheimer’s disease (AD). Participation involves a lumbar puncture and bloodwork.

REQUIREMENTS

- 40-90 years of age with no memory problems
- 60-90 years of age with MCI or early AD
- Able to read and write in English
- Able to see and hear well
- Able to walk

COMPENSATION
Participants will receive up to $200 per year for the study.

CONTACT
Helen Vanderswag, R.N.C., B.S.N. at (858) 622-5800 and ask for the "Biomarkers Study"
hvanderswag@ucsd.edu

Passive Immunization

Amyloid Antibody Treatment for Alzheimer’s Disease

PRINCIPAL INVESTIGATOR
James Brewer, M.D., Ph.D.

TIME INVOLVED
18 months with at least 15 visits.

DESCRIPTION
A research study to learn if the investigational drug, bapineuzumab (ABB-001) is safe, well tolerated and effective for use in individuals with Alzheimer’s disease (AD). It is hoped that bapineuzumab will attach to amyloid in the brain and help remove it from the body. Participants will have a 60% chance of receiving the study drug vs a 40% chance of receiving a placebo (inactive drug). Throughout the study, participants will be monitored by a medical team of doctors and nurses.

REQUIREMENTS

- 50 to 88 years of age
- Diagnosis of probable Alzheimer’s disease
- Are in good physical health
- Have a reliable caregiver
- Blood tests, memory testing, MRIs of the brain and other study-related physical examinations

CONTACT
Helen Vanderswag, R.N.C., B.S.N. at (858) 622-5800 and ask for the "Passive Immunization Study"
hvanderswag@ucsd.edu

Identity 2

PRINCIPAL INVESTIGATOR
Douglas Galasko, M.D.

TIME INVOLVED
23 Months

DESCRIPTION
The primary purpose of the Phase III study of LY450139, a Gamma-Secretase Inhibitor study, is to test whether LY450139 given orally will slow the rate of decline of mild-to-moderate Alzheimer’s disease as compared with placebo. Studies indicate LY450139 may inhibit the synthesis of amyloid-B (Aß) potentially slowing the underlying rate of disease progression. This is a multicenter, randomized, double-blind, placebo-controlled, Phase 3 study. At Week 64 patients receiving placebo will begin receiving LY400139 for the remainder of the study.

REQUIREMENTS

- A minimum of 55 years of age or older
- Has a diagnosis of mild to moderate AD
- MMSE score 20 to 26
- MRI or CT performed within the last two years
- Have a reliable study partner

CONTACT
Judith A. Rivera, R.N., M.S.N., F.N.P., N.P. at (858) 622-5800 and ask for the "Identity 2 Study"

jrivera@ucsd.edu

Dimebon

PRINCIPAL INVESTIGATOR
Jody Corey-Bloom, M.D., Ph.D.

TIME INVOLVED
22 Months

DESCRIPTION
This is a multicenter, randomized, double-blind, placebo-controlled, Phase 3 study. At Week 64 patients receiving placebo will begin receiving LY400139 for the remainder of the study.

REQUIREMENTS

- Age 50+ with mild-to-moderate AD
- Currently taking Aricept® 10 mg /day
- Are not currently taking Namenda®
- Able to read and write in English

CONTACT
Karen Wetzel, M.P.A.S., PA-C at (858) 622-5800 and ask for the "Dimebon Study" kwetzel@ucsd.edu
The National Institute on Aging (NIA) has released the latest edition of the Progress Report on Alzheimer's Disease, a summary of Alzheimer's research conducted or sponsored by NIA and other components of the National Institutes of Health (NIH).

The 2007 Progress Report on Alzheimer's Disease: Discovery and Hope describes NIH's important AD research effort. The 48-page publication begins with an introduction followed by a brief primer on AD that reviews the main features of the disease, discusses the causes, and describes how AD is diagnosed and treated. The main section highlights recent advances in nine topic areas:

- Improving Our Basic Understanding of AD
- Learning About Cognitive Aging
- Normal Cognitive Aging, Cognitive Decline, and AD: What's the Difference?
- Accelerating the Search for Genetic Causes and Risk Factors
- Attention to Non-genetic Risk and Protective Factors Pays Off
- Exploring All Possibilities to Improve AD Diagnosis
- Making the Most of Translational Research
- Supporting the Gold Standard: AD Clinical Trials
- Helping Caregivers Cope

The Progress Report concludes with an outline of the many ways in which the NIH is building on the momentum of three decades of groundbreaking AD research.

To download or order free copies of the 2007 Progress Report on Alzheimer's Disease, visit http://www.nia.nih.gov/Alzheimers/Publications/ADProgress2007/ or call the Alzheimer's Disease Education and Referral (ADEAR) Center toll-free at 800-438-4380.

The National Institutes of Health (NIH) has an informative website for seniors that provides up-to-date health and wellness information on a variety of topics. Categories cover a wide array of health conditions. Informative video clips are included on the website as well as stories from seniors about the diverse activities and exercise routines that they enjoy to stay healthy. At the top of the website's home page, you can increase the text size or increase the contrast for easier reading, or click onto the speech button to hear the text read aloud.

To explore this helpful website go to http://www.NIHSeniorHealth.gov
Out and About is an eight-week series of socially and culturally enriching outings for people with Alzheimer’s or a related disorder that aims to stimulate mental, social, and physical abilities. The program offers enjoyable ways for people with memory loss to get “out and about” and maintain independence. Numerous destinations have been explored including docent-led visits to nature preserves and to our region’s many art and historical museums and sites.

This Spring marks our fourth year of providing Out and About to the community. The Alzheimer’s Association and more recently Elder Care Guides and Senior Life Assistance partner with us to provide transportation and help staff Out and About. Drop off and pick up sites have been in Encinitas, La Jolla, and Kearny Mesa, but based on our two new agency partnerships, we can now provide a second Out and About program with a drop off and pick up site in Liberty Station (Sports Arena/Point Loma area). This has become a more convenient site for our participants from Central or South Bay regions of the county.

The primary reasons people report for attending Out and About are to get out of the house and go interesting places as well as the socializing with others. Participants report meeting new friends and also enjoy interactions with the outings staff. Not every outing or lunch stop is a hit with each participant, but over the course of the eight-week series, there is usually considerable variety in the destinations and a little something for everybody. Of those who complete their program satisfaction surveys at the end of the eight-week series, 84% of participants have reported feeling less isolated and alone as a result of the program with 74% reporting they feel more motivated to have increased activity. Words participants use to describe Out and About include “togetherness”, “fun”, and “informative.” Caregivers have noted that their loved one seems less depressed and more animated after the outing. Caregivers also greatly value the 4-to-5 hours of respite they are afforded when their participant is in the program.

Although many participants re-enroll in the program and continue over the course of many series, some choose not to return to the program. Difficulty staying engaged in the outing, anxiety about being away from a care partner, physical mobility issues, advancing symptoms, or transportation logistics can all be factors in a decision to discontinue participation.

Out and About is a not-for-profit program that is sustained by a registration fee to cover all of the food, transportation, site admissions, and staffing expenses.

For more information on Out & About, please contact Lisa Snyder, LCSW, Program Director at 858-622-5800.
On Thursday, February 26, 2009 the Chula Vista Yacht Club was the site of our annual Hispanic Program Thank You Luncheon. Our Medical Director, Doug Galasko, MD and neuropsychologist David Salmon, PhD joined our nurse practitioner, Judith Rivera MSN, FNP in sharing some of the latest developments in Alzheimer’s disease (AD).

Dr. Galasko addressed how AD affects the brain and the continuing efforts to find treatments to slow disease progression. He also reminded the audience that Gingko biloba does not prevent AD, as we receive numerous inquiries about this supplement. He discussed a number of possible ways to reduce risk of AD including: treating diabetes and blood pressure; social stimulation; remaining mentally active; exercise; and eating a heart healthy diet (including moderate consumption of coffee or tea, red wine, and chocolate). Those final dietary recommendations made many attendees smile!

Dr. Salmon reviewed the pathology of AD and the cognitive (thinking) abilities affected by the disease. He identified how a Memory Screening research project is addressing the concerns of both patient and doctor. He reviewed the components of memory screening, the results, any recommendations to primary care physicians, and any subsequent new action taken in the patient’s care plan. The screening is an effective tool to validate patients’ memory complaints. Our goal is to establish a similar Memory Screening project for our elderly Hispanic community.

Judith Rivera, introduced University of San Diego nursing graduate student Lourdes Perez, who is conducting a special research project identifying reasons why Hispanics may be cautious to participate in clinical trials. Judith also introduced Christina Ortiz who will be working with her on the Gamma-Secretase Clinical Drug Trial that is currently recruiting for participants. Both Dr. Galasko and Judith identified other clinical trials for AD now underway at the ADRC including brain imaging, Antibodies (Bapineuzumab), Dimebon, RAGE inhibitor, Nerve Growth Factor, and Stem Cell skin biopsy. For further information about clinical trials as well as our ongoing longitudinal study please call (858) 622-5800.

We greatly value our partnership with our research volunteers and hope that the luncheon helped to convey our appreciation. Fabiola Manriquez whose father participates in the ADRC says, “We leave with a greater understanding of the purpose of coming together and are encouraged to continue to reunite for our goal to discover a cure…Thanks to the support system that is provided through the Shiley-Marcos Alzheimer’s Disease Research Center our struggle with this complex and debilitating illness has become more manageable and we are eternally grateful.”

We extend heartfelt appreciation to Supreme Catering for their excellent menu and customer service during our luncheon.
The Shiley-Marcos Alzheimer’s Disease Research Center, The Alzheimer’s Association, San Diego/Imperial Chapter and The Neurosciences Institute Invite you to a preview and panel discussion of HBO Documentary Films’

THE ALZHEIMER’S PROJECT

The Alzheimer's Project is an HBO documentary series airing on television May 10-12. The documentary will provide an up-close and personal look at seven individuals living with Alzheimer’s in varying stages of the disease; a state-of-the-science report that takes viewers inside the laboratories and clinics of leading scientists and physicians; a segment about what it means to be a child or grandchild of a person with Alzheimer’s; and a segment devoted to caregivers and the sacrifices and successes of people who experience the progression of their loved ones' dementia.

PLEASE JOIN US

View a 60-minute segment of The Alzheimer's Project entitled “Momentum in Science.” We will follow the film segment with a panel discussion with some of San Diego’s leading scientists in Alzheimer’s research.

Tuesday, May 5th
6:30 pm Reception
7:00 pm Screening of “Momentum in Science”

The Neurosciences Institute
10640 John Jay Hopkins Drive
La Jolla, CA 92121

This event is free of charge. Reservations are required and seating is limited. PLEASE RSVP to: 1-888-560-5856 or online https://homeboxoffice.com/rsvp/alzheimersSD

To obtain directions:
(ph) 858-626-2099
(website) http://www.nsi.edu/index.php?page=directions_map
Memories at the Museum

A collaboration between The San Diego Museum of Art and The UCSD Shiley-Marcos Alzheimer’s Disease Research Center

Join us on Friday, April 24th from 2:00-3:00pm at the San Diego Museum of Art, Balboa Park

San Diego Museum of Art docents guide visitors with memory loss through the painting and sculpture exhibits. They facilitate discussions to engage their visual, verbal, and mental abilities, and provide a fun interactive experience. A separate simultaneous tour is provided for an accompanying friend or family member. This program is entirely free of charge to both participants with memory loss and their companions, and is offered quarterly.

Pre-registration is required.
If you would like to participate please contact Lisa Snyder at (858) 622-5800.