In their study published in the June issue of the journal *Alzheimer Disease and Associated Disorders*, Shiley-Marcos Alzheimer’s Disease Research Center (ADRC) researchers Drs. James Brewer and Michael Rafii have shown that a procedure called Volumetric MRI – which measures the “memory centers” of the brain and compares them to expected size – is effective in predicting the progression from mild cognitive impairment (MCI) to Alzheimer’s disease. MCI is considered a transitional stage between the forgetfulness that accompanies normal aging and the significant memory loss associated with Alzheimer’s. Not all persons with MCI progress to Alzheimer’s, and those who do not decline do not need treatments targeted to prevent or slow down a progressive disease. Therefore, objective measures are necessary to distinguish MCI patients who will decline to Alzheimer’s from those who will remain stable. (Continued on Page 2)

BILINGUALISM, AGING, and ALZHEIMER’S DISEASE
Hispanic ADRC Participants Shed Light On Important New Research

As the US population ages and becomes more ethnically diverse the number of bilingual people with Alzheimer’s disease (AD) will increase dramatically. A report from the Alzheimer’s Association (2004) predicts that during the first half of the 21st century, the number of elderly Hispanic people suffering from AD and related disorders could increase from fewer than 200,000 today to as many as 1.3 million by 2050. It is likely that many of these people are bilingual—that is, able to communicate in both English and Spanish at least to some degree.

Indeed, the most recent US Census reports that one in five people in the US speak a language other than English at home while still speaking English “very well”.

Despite this increase of bilingualism in the elderly, very little is known about the impact of being bilingual on the initial presentation and clinical course of AD, or about the impact of AD on the ability to know and fluently use two or more languages. The Shiley-Marcos ADRC has recently begun to address these important issues by carrying out research on changes in (Continued on Page 3)
“Use of this procedure [Volumetric MRI] is like bringing the experience of an expert neuro-radiologist to any clinic that has the right software,” said Dr. Brewer. “These fully automated and rapid methods of measuring medial temporal lobe volumes may help clinicians predict cognitive decline in their patients, and have the potential to influence how neurology is practiced.”

Shrinkage of the medial temporal lobe region of the brain has been associated with increased risk for conversion of MCI to Alzheimer’s disease. Until now, however, studies have focused only on measurements of the brain’s hippocampus, the region that is affected early on in Alzheimer’s and is most responsible for short-term memory. The extent to which volumes of the amygdala – the section of the brain associated with emotions – and the nearby temporal horn could predict cognitive decline was unknown.

For more than a year, researchers at the Memory Disorders Clinic at UCSD Medical Center have been successfully using a fully computerized procedure that takes images from the MRI scanner and translates them into quantitative values. UCSD was the first clinic site to use this technology, which is now starting to be used in other clinical settings throughout the country. “Our goal was to find neuroimaging measures of change that reflected more than merely a person’s advancing age, but instead correlated tightly with how a person’s cognitive status worsens over time,” said Dr. Rafii. “It’s too early to draw a definitive comparison, but it appears that these early changes – especially shrinking of the hippocampus – may offer a robust biological marker for change.”

The study is part of the Alzheimer Disease Neuroimaging Initiative (ADNI), the largest Alzheimer’s disease study ever funded by the National Institutes of Health. Announced in October 2004 and set to run until 2010, this public-private consortium has engaged 59 research centers in the U.S. and Canada in a massive effort to follow 821 research volunteers for three years. Drs. Brewer and Rafii looked at the fully automated volume measures over a six-month interval of 269 MCI patients who received MRIs through the ADNI trial. Baseline volume measurements of the hippocampus, amygdala, and temporal horn were evaluated as predictors of cognitive change as measured by two commonly administered mental status tests used to rate changes and decline in thinking abilities. Patients with smaller volumes of the hippocampus and amygdala showed more rapid decline on these tests.

“These values objectively measure the hippocampus and amygdala, and early data confirm previous findings that these brain areas may atrophy early in Alzheimer’s disease and can offer a clinical marker for change,” said Rafii. “The fluid-filled temporal horn increases as the hippocampus shrinks, and these complementary measurements may correlate closely with how a patient’s cognitive status worsens over time,” he added.

Sanja Kovacevic, PhD, UCSD Department of Radiology, also contributed to this study, which was supported by the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, and the Alzheimer’s Disease Neuroimaging Initiative, funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering and the Food and Drug Administration. Principle investigator of ADNI is Michael W. Weiner, MD, VA Medical Center and University of California, San Francisco.
language and other cognitive abilities (for example, flexibility in thinking, memory) in bilingual elderly people who are healthy or who have AD.

Fortunately, recent years have brought numerous studies that have identified the impact of being bilingual on language and thinking processes in healthy people, and lessons learned from these studies can be applied to the study of AD. Studies have shown that bilingual children are better able than monolingual children (who know only one language) to separate the meaning of a word from how words are used in grammar. Young adults who are bilingual are faster than those who are monolingual in making decisions in the presence of distracting information, and older adults who are bilingual often have slightly higher scores on tests that screen for age-related decline in functioning. There are also some small disadvantages to being bilingual. People who are bilingual have more difficulty and are slower in naming objects, and they produce fewer words when trying to quickly say as many words as they can from a given category (for example, “animals”). These advantages and disadvantages of being bilingual may have an impact on how AD affects language and other cognitive abilities (for example, memory or flexibility in thinking) and could make it difficult to diagnosis and track the progression of the disease.

As part of our research on bilingualism and AD we have started to evaluate the effect of AD on both languages in people who are bilingual. Focusing primarily on our Hispanic participants, we have identified and tested patients with AD and healthy elderly people who are highly bilingual (about equally good in either language), moderately bilingual (stronger in one language than the other), or monolingual (speak only Spanish or English). We have already made several surprising and important discoveries. First, we found using a picture naming test that bilingual people with AD benefit more than healthy bilingual people from being allowed to name pictures in either language. This suggests that AD may affect the first (or dominant) language more than the second (or non-dominant) language in the initial stages of the disease. This goes against the “conventional wisdom” that people tend to lose their second language and revert back to their dominant, first language when they develop dementia. Second, we found that bilingual people with AD are no more likely than healthy bilingual people to intrude words from one language into their use of another language when they speak. This implies that the ability to control language remains relatively intact in AD. There is also growing evidence that having to control the use of two languages throughout life carries over into other mental activities. Ellen Bialystok and colleagues at the University of Toronto suggest that the increased cognitive flexibility that comes from using multiple languages may delay the onset of dementia symptoms in people with AD.

These findings move us closer to our goal of identifying any effects of AD that might be unique to people who are bilingual. We will continue to expand our studies on bilingualism and AD in the hope that any differences we identify between bilingual and monolingual patients will help to improve diagnosis and treatment of dementia in this growing segment of the US population.
Exercise is a general recommendation for maintaining health across the lifespan. There is increasing evidence that physical exercise is not only good for the body, but is good for the brain. Evidence comes from animal models as well as research with humans. For example, rodents housed in enriched environments with access to a running wheel and other interesting objects to play and interact with, have been shown to have enhanced brain systems involved in learning and memory. In humans, evidence suggests that older adults who participate in physical exercise have improved thinking skills compared to more sedentary individuals. Exercise appears to be particularly beneficial to “higher order” or more complex thinking skills such as planning and multi-tasking. Physical activity may also prevent cognitive decline and may delay the onset of dementia. There is also emerging evidence that physical activity may contribute to maintenance of brain volume over time. These positive changes in the brain have been noted most prominently in the frontal lobes of the brain, a region generally associated with higher order mental skills.

Nonetheless, many questions remain regarding the link between exercise, brain volume, and thinking. How is exercise actually exerting its positive impact? What specific brain structures might be most positively impacted by physical activity? How much exercise is enough to reap the positive benefits? At what point in life does one need to begin physical activity to gain cognitive benefits? These are just some of the questions that I am interested in answering in my studies of the effects of physical exercise on cognition and brain health in older adults.

Preliminary work from my research shows that older adults without dementia who self-reported higher levels of physical activity, had significantly better visuospatial skills (i.e., visual perception and spatial relationships among objects), memory, and executive functioning (i.e., higher level cognitive skills like problem solving and planning). Exercise also aided cognition and brain maintenance in individuals with Mild Cognitive Impairment (MCI). Individuals with MCI are at increased risk for developing Alzheimer’s or a related dementia. My preliminary work in this area suggests that persons with MCI who are more physically active appear to have slower hippocampal volume loss in the brain (the hippocampus is a brain structure essential to forming memories) and better maintenance of overall thinking abilities and executive functioning than those who are more sedentary.

In summary, regular physical exercise holds promise as an important non-pharmacologic strategy to delay onset or slow the rate of cognitive decline in older adults, however, the exact amount and duration of exercise needed to reap these cognitive benefits is still not clear. It is also particularly encouraging that even in individuals with MCI, physical activity may extend periods of normal cognition and slow brain volume changes over time. As such, physical exercise may be particularly important for those who have already evidenced some mild cognitive decline.

For more information about these findings or to contact Dr. Amy Jak about participating in research related to exercise and cognition, please call: (858) 552-8585 ext. 2670.
Exercise for Older Adults: New National Institute on Aging (NIA) Guide Available

The NIA’s new exercise guide for older adults has something for everyone. Whether healthy, chronically ill, or disabled, most older people can be physically active. The updated guide, *Exercise & Physical Activity: Your Everyday Guide from the National Institute on Aging*, shows them how. The guide is based on decades of research that shows the benefits of physical activity for older adults, including those with heart disease, diabetes, arthritis, and other chronic conditions.

The goal of the guide is to encourage people 55 and older to be more physically active. To that end, it describes the benefits of physical activity and healthy eating, explains how to get started, and demonstrates four types of exercises—endurance, strength, balance, and flexibility—that can be done at little or no cost, often at home. It also suggests ways to modify activities so that people with chronic conditions and disabilities can exercise safely. Many seniors know that regular physical activity is good for them but, like many younger adults, they can have trouble getting started and staying on track.

The guide takes a flexible stance on physical activity by including household chores and hobbies, such as raking leaves and dancing, as well as traditional exercises such as strength training, jogging, and aerobics classes. The message is to be active in ways that suit your lifestyle, interests, health, and budget. The guide also offers practical tips on when to talk with the doctor about exercise and information on being active in specific situations, such as walking in rural areas.

Caring for a Person with Alzheimer’s Disease: Your Easy-to-Use Guide

This publication is FREE from the National Institute on Aging’s (NIA) Alzheimer’s Disease Education and Referral (ADEAR) Center. This easy-to-read, 136-page handbook helps family members and others learn about and cope with the daily changes and challenges of caring for someone with Alzheimer’s disease. The comprehensive guide provides helpful tips and advice on topics including:

- Helping family members and others understand Alzheimer’s
- Health, legal, and financial issues
- Safety
- Daily care and adapted activities
- Caring for the caregiver
- Medical issues and medication use
- Getting help and finding long-term care
- Coping with the late stages of Alzheimer’s
- Participating in clinical trials

Caring for a Person with Alzheimer’s Disease was developed in collaboration with the Rush University Alzheimer’s Disease Center in Chicago and field tested with Alzheimer’s caregivers to ensure the guide’s readability and usability. A detailed medication chart, glossary, and resource lists are included.
A clinical trial is a test or study of a new drug, device, or procedure. The following clinical trials are testing how effectively a medication works in relieving symptoms, diagnosing, or providing treatment for Alzheimer’s disease.

Although participation in a clinical trial does require some time commitment with visits to our Shiley-Marcos Alzheimer’s Research Center, in many cases, the visits are infrequent. Some people do not want to participate in a clinical trial if there is a chance of receiving a placebo (a look-alike pill with no medicinal ingredients). It is well documented, however, that people who are unknowingly taking a placebo sometimes experience improvement of their symptoms or condition simply because they believe they are taking something that could be of benefit to them. Also, the ongoing support of the clinical trial coordinator can be a rewarding experience that increases feelings of well being for the participants.

Please contact us with any questions or concerns about our clinical trials. We greatly value your participation so that we can continue to make advances in the treatment and cure of Alzheimer’s disease.

Christina Gigliotti, Ph.D. at (858) 622-5800 and ask for the “Cere-110 Study”
cgigliotti@ucsd.edu

Helen Vanderswag, R.N.C., B.S.N. at (858) 622-5800 and ask for the “Biomarkers Study”
hvanderswag@ucsd.edu

Judy Core-Bloom, M.D., Ph.D. at (858) 622-5800 and ask for the “Dimebon Study”
jcorey@ucsd.edu

Karen Wetzel, M.P.A.S., PA-C, at (858) 622-5800 and ask for the “Dimebon Study”
kwetzel@ucsd.edu

Christina Gigliotti, Ph.D.
Principal Investigator
Michael Rafii, M.D., Ph.D.
Mimebo Pharmaceuticals

Cere-110 Study
24 Months
DESCRIPTION
Nerve growth factor (NGF) research is a phase 2 double-blind, placebo-controlled study. The purpose is to test the safety, tolerability, and effectiveness of a new experimental gene transfer drug called Cere-110 in those with mild-to-moderate AD. Studies suggest that NGF may help increase the survival of neurons that degenerate in AD. The ability of NGF to prevent brain cell loss in animal models of AD has led to delivering NGF to humans. In this study NGF is delivered directly by surgical insertion into the region of the brain where cell death occurs. Gene therapy is experimental and has not yet been approved by the FDA.

REQUIREMENTS
- 55-80 years old
- On stable AD medication for 3 months
- Have a study partner for all visits
- Fluent in English
- Are in general good health

Compensation
Participants will receive up to $200 per year of the study for undergoing the lumbar punctures.

Biomarkers in Aging, MCI, and Alzheimer’s Disease

James Brewer, MD, Ph.D.
PRINCIPAL INVESTIGATOR
Douglas Galasko, M.D.
MIMEBO PHARMACEUTICALS

Passive Immunization-Amyloid Antibody Treatment for Alzheimer’s Disease
18 months with at least 15 visits
DESCRIPTION
A research study to learn if the investigational drug, bapineuzumab (AAB-001) is safe, well tolerated and effective for use in individuals with Alzheimer’s disease (AD). It is hoped that bapineuzumab will attach to amyloid in the brain and help remove it from the body. Participants will have a 60% chance of receiving the study drug vs a 40% chance of receiving a placebo (inactive drug). Throughout the study, participants will be monitored by a medical team of doctors and nurses.

REQUIREMENTS
- 50 to 88 years of age
- Diagnosis of probable Alzheimer's disease
- Are in good physical health
- Have a reliable caregiver
- Blood tests, memory testing, MRI of the brain and other study-related physical examinations

Compensation
For the remainder of the study.

Identity 2

James Brewer, MD, Ph.D.
PRINCIPAL INVESTIGATOR
Douglas Galasko, M.D.
MIMEBO PHARMACEUTICALS

Concert
12 Months
DESCRIPTION
Dimebon is an experimental drug being developed by Medivation, Inc. to treat diseases of the brain such as Alzheimer’s disease. This study will determine whether Dimebon combined with donepezil (Aricept®), improves the symptoms of Alzheimer’s disease. Participants will be randomly assigned to one of three groups: 5 mg Dimebon three times a day, 20 mg Dimebon three times a day or placebo (a pill with no active drug) three times a day. All participants will also take a stable dose of donepezil 10 mg once a day. At the end of the study, participants will have the opportunity to enter an additional Dimebon study and receive 20 mg Dimebon three times a day until Dimebon is approved for sale.

REQUIREMENTS
- Age 50+ with mild-to-moderate AD
- MMS score 16 through 26
- MRI or CT performed within the last two years
- Have a reliable study partner

Clinical Trials Registry
Are you interested in clinical trials but don’t find one that suits you? You can now join our Shiley-Marcos ADRC registry to be placed on a list for future studies.

Participants can be:
- Normal Controls
- Have a mild memory problem
- Be diagnosed with early-to-moderate Alzheimer’s Disease

Call the Shiley-Marcos ADRC at (858) 622-5800
Research Ignites the Brain Fitness Craze

In a recent National Institutes of Health (NIH) funded study known as Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE), approximately 3,000 older adults living independently participated in one of three types of cognitive training programs for a 5-to-6 week period: memory training; training in reasoning; or training to increase speed of thinking. The immediate and long-term benefit of cognitive training on overall thinking abilities and on the ability to perform tasks of everyday living was measured.

Results from the ACTIVE study showed that older adults with normal memory function improved on whichever cognitive task they were trained, and that the improvement was sustained over the five year follow-up period, especially with occasional 'brush-up' training sessions. Improvement on the trained reasoning and memory tasks did not, however, lead to better performance on real-world tasks using memory and problem solving (e.g., making change for a purchase and identifying information on medication labels). There was modest benefit of training in speed of thinking to performance on similar real-world tasks. Participants who benefited from speed-of-processing training were faster than those without training when looking up phone numbers in the yellow pages, for example.

Older adults with mild memory impairment at the beginning of the ACTIVE study improved in reasoning ability or speed of thinking if trained in those areas, but did not benefit on the trained memory tasks. Memory training programs for older adults may only work (to the limited extent that they do) before the significant memory loss of Mild Cognitive Impairment (MCI) or Alzheimer’s begins. Memory training is not likely to change the underlying course of disease. Well-practiced habits and skills that were learned before the onset of memory impairment (e.g., professional or recreational skills) are least susceptible to memory decline and can often be maintained for a longer period of time, especially if practiced regularly.

It is possible that some other approaches may help keep remaining memory abilities as strong as possible by taking advantage of the best opportunities for learning and recall. For example, information that is personally meaningful and emotionally significant is more likely to be learned and remembered later. And a verbal cueing technique (e.g., single word reminders about an experience) can often assist recall for those with memory impairment. These methods may require considerable time and effort, so the benefit to one’s routine daily activity remains questionable.

From Research to Real World Living

The results of research studies suggest that any benefit of cognitive training is often limited to the trained task and does not transfer well to one's performance on more typical daily activities. The most likely reason for these disappointing results is that real-world cognitive activities involve multiple types of thinking as well as physical and social aspects that all contribute in some way to performance. The activity of driving, for example, involves close attention and orientation to one’s location, memory for rules of the road and details for reaching a destination, physical activity involved in operating the vehicle, and even social conversation with passengers.

What Kind of Mental (Brain) Exercise is Best?

There is really no single ‘best’ cognitive activity. A recent study showed that consistent participation in mentally-stimulating leisure activities that involve cognitive, social, and physical activity can significantly reduce older adults’ risk of developing dementia. A person’s skills, interests, and living environment should all be taken into account when selecting engaging, enjoyable, and beneficial activity.

(Continued on Page 9)
Many people inquire about the possible benefits of computer-based brain fitness programs. A recent study of one popular computer game offers hope for some benefit to individuals without memory impairment (e.g. improved speed of thinking, memory, and attention), but there is little evidence at this point for real-world benefit to those with early dementia. The preliminary finding of benefit to healthy individuals awaits verification, however, since the initial study was funded by the company manufacturing the program and is therefore not entirely free of bias.

Bottom Line

A panel of expert cognitive and brain scientists convened by the Stanford Center on Longevity and the Max Planck Institute for Human Development offer a ‘bottom line’ in their recently released consensus statement regarding brain fitness interventions. Their statements are directed toward healthy consumers of fitness products and programs, but apply to those with existing memory impairment as well:

“There is no evidence that software products on the market or any other cognitive or social interventions available today can delay or prevent disease...Before settling on a particular method and investing time and sometimes money in a particular product, consumers need to consider hidden costs beyond dollars and cents: Every hour spent doing solo software drills is an hour not spent hiking, learning Italian, making a new recipe, or playing with your grandchildren. Other avenues for cognitive enhancement, such as participating in your community and exploring your passions may also stimulate your mind while producing socially meaningful outcomes.”

Creating Meaningful Moments

A workshop for people with early-stage Alzheimer’s and their care partners to develop daily routines and engaging activities

This 4-session workshop is based on the most up-to-date research for persons with Alzheimer’s and their care partners and is designed to take together. We will discuss:

- Maintaining meaningful activities in daily life
- Initiating activities and creating a calendar
- Creating a daily routine
- Overcoming obstacles to participating in activities

Participants will be provided with The Activity Planning Workbook written by Teresa Shanahan, PhD, as well as other helpful resources.

Instructor: Teresa Shanahan, Ph.D, Lifeline Healthcare, Inc.

Dates and Time: Four consecutive Thursdays from September 17th – October 8th at 10:30-12:00 am.

Location: UCSD Shiley-Marcos Alzheimer’s Disease Research Center (ADRC)

Cost: $75.00

Creating Meaningful Moments is a program of Lifeline Healthcare, Inc. and co-sponsored by the Shiley-Marcos ADRC.

Please call Lisa Snyder, LCSW at the Shiley-Marcos ADRC at 858-622-5800 for more information or to enroll in this workshop. Pre-registration is required.
ADRC SUPPORT GROUPS

The Shiley-Marcos Alzheimer’s Disease Research Center (ADRC) is committed to providing support to our participating research center families as well as to families facing Alzheimer’s or a related disorder throughout our San Diego region. We offer the following support groups that are free of charge and open to the community:

FOR PEOPLE DIAGNOSED WITH ALZHEIMER’S OR A RELATED DISORDER

Early-Stage Alzheimer’s Support Group. This weekly support group is for people diagnosed with Mild Cognitive Impairment (MCI), early-stage Alzheimer’s or a related dementia. A concurrent caregiver support group is available only to caregivers who have a loved one with early-stage dementia participating in the group. This group meets weekly at the Shiley-Marcos ADRC in La Jolla and requires pre-registration. It is co-facilitated by Lisa Snyder, LCSW and Cecily Jenkins, PhD. **Call Lisa Snyder, LCSW at 858-622-5800 for more information.**

Bilingual Young Caregiver Support Group. If you are bilingual (English/Spanish), under age 60, and caring for someone with Alzheimer’s or a related disorder, join our new younger caregiver support group. Younger caregivers (often adult children) face unique circumstances as they juggle career, family, economic, and social challenges. The group meets on the 4th Tuesday of every month from 5:00-6:30 pm at 1401 National City Blvd. in National City. This support group is facilitated by Frances Martinez-Goodrich MSW and Jorge Porras, MD and is co-sponsored by the Alzheimer’s Association, San Diego/Imperial Chapter. **Call Frances Martinez Goodrich for more information at 858-622-5800.**

Younger Caregiver Support Group. This monthly support group is for caregivers under age 60. This group meets on the 2nd Wednesday of each month from 6:30-8:30pm at the G. G. Glenner Alzheimer’s Family Center at 3702 4th Ave. (Corner of 4th and Pennsylvania) in Hillcrest. This group is facilitated by Frances Martinez Goodrich, MSW and is co-sponsored by the G.G. Glenner Alzheimer’s Family Center and the San Diego/Imperial Chapter of the Alzheimer’s Association. **Call Frances Martinez Goodrich for more information at 858-622-5800.**

Caregiver Support Group. The Shiley-Marcos ADRC will be starting a new caregiver support group at our research center in La Jolla. This group is open to caregivers of all ages who are caring for a loved one with any kind of dementia at any stage in the dementia process. The group will meet on the 2nd Wednesday of each month from 2:00-3:30 and will be facilitated by Lisa Snyder, LCSW. We will start this group when we have a minimum of 6 interested caregivers. **Call Lisa at 858-622-5800 if you would like to participate in this new group.**
In January, 2009, Shiley-Marcos ADRC nurses began a rewarding collaboration with the University of San Diego (USD) Hahn School of Nursing graduate program. Our nursing staff were asked to provide learning experiences and mentoring for USD advanced practice nurses Stacy L. Nilsen, RN and Lourdes Perez, RN, in the areas of normal aging, memory loss, and dementia, particularly Alzheimer’s disease (AD).

As part of their graduate training Stacy and Lourdes participated in a “Capstone Project” which involved designing a research project to be carried out within our ADRC. The criteria required that the research project contribute information and knowledge to the center in which it was carried out. After brainstorming with ADRC staff about recruitment and retention in our center, the students designed a survey to help us better understand why our current ADRC research participants may choose not to enroll in other studies (including clinical trials) beyond the annual longitudinal evaluation.

Stacy and Lourdes reviewed the scientific literature to learn what has been documented about barriers to research participation. Findings revealed eight barriers including: transportation logistics; randomization to placebo or possible side-effects from the treatment under investigation; blood draws; duration or length of visits; concern about clinical trial consents; apprehension about spinal taps (also called lumbar punctures); repeated MRI or CT scans (worry about radiation exposure); total length of study.

Based upon these existing findings and the anecdotal reasons gathered by the Shiley-Marcos ADRC nurses from our own research participants over the years, Stacey and Lourdes developed telephone surveys to better understand our participants’ reasons for choosing not to enroll in additional research studies or clinical trials. The nurses surveyed 30 non-Hispanic caregivers and 15 Hispanic caregivers. Inclusion criteria for the survey was that the affected family member have a diagnosis of AD or MCI (mild cognitive impairment).

Results of the survey validated similar themes from those in the literature. Of the non-Hispanic caregivers, 41% stated transportation was a barrier to further research participation. If the information could be obtained on the phone or by a home visit this would likely increase their enrollment. Additionally, if the trial had a design that ensured their loved one would receive the active drug (vs. the placebo) at some point in the study this would motivate enrollment. Seventy-nine percent also indicated that a recommendation from their primary care physician would be motivating.

Consistent with non-Hispanics, 47% of Hispanic subjects indicated transportation was a barrier to participation with 60% stating that the time and effort involved in extra research was a barrier. All of the caregivers stated that if transportation was provided it would increase the likelihood of participation and 80% indicated that if the proximity of the center were nearer they would be more likely to enroll.

These findings, while based on small sample size, are consistent with published literature reporting barriers to clinical trials participation. While some clinical trials are now being designed to offer a greater percentage of enrollees access to the active drug, travel to the study site and time commitment remain challenging obstacles to overcome. We are deeply grateful to those who do enroll in clinical trials, as these studies are essential to our progress in understanding and treating Alzheimer’s and related disorders.

Our thanks to Stacey and Lourdes for their contribution to our ADRC and we hope to have opportunities to work with more nursing students from USD in the future.
Memories at the Museum

A collaboration between The San Diego Museum of Art and The UCSD Shiley-Marcos Alzheimer’s Disease Research Center

Join us on Friday, October 23rd from 2:00-3:00pm at the San Diego Museum of Art, Balboa Park

San Diego Museum of Art docents guide visitors with memory loss and an accompanying friend or family member through the painting and sculpture exhibits. They facilitate discussions to engage their visual, verbal, and mental abilities, and provide a fun interactive experience. This program is entirely free of charge to both participants with memory loss and their companions, and is offered quarterly.

Pre-registration is required. If you would like to participate please contact Lisa Snyder at (858) 622-5800.