Dr. Paul Aisen, shown in his lab in La Jolla, is dedicated to unraveling the mysteries of Alzheimer’s disease.

NELVIN C. CEPEDA • UT

UC San Diego professor is overseeing a clinical trial that could be a landmark in understanding how the disease forms.

BRADLEY J. FIKES • UT

Dr. Paul Aisen has been fascinated with the mysteries of science ever since childhood. As an adult, he’s devoted to solving one of science’s biggest and most enduring mysteries: What is Alzheimer’s disease and how can it be stopped?

Aisen has headed the Alzheimer’s Disease Cooperative Study, a joint program of the National Institute on Aging and UC San Diego, since 2007. It’s the umbrella group responsible for launching dozens of internationally known clinical studies, recruiting more minorities to participate in those tests and developing new diagnostic instruments.

That leadership position — along with Aisen’s expertise in designing innovative studies of potential therapies — makes him one of the most important Alzheimer’s researchers in the world. Fellow scientists and pharmaceutical giants from various countries regularly seek his guidance.

Currently, the program he oversees at UC San Diego is looking at one of the most promising therapies for Alzheimer’s: an experimental vaccine. If it works, it could be a game-changer for millions of people worldwide.

As for the future, Aisen says he hopes to continue his work for many years to come. ‘I still have a lot to learn about Alzheimer’s disease,’ he says. ‘And I think there’s a lot of hope for the future.’

Family fun: Disney raises ticket prices for its U.S. theme parks, with tickets to Walt Disney World breaking the $100 mark. Next stop, ATMLand.

Pension tension: Newly released emails show an accelerating clash between two trustees on the county pension board. Shouldn’t the investment returns be heating up instead of the tempers?

KARLA PETERSON & JOHN WILKENS

Positions: Professor, Department of Neurosciences, UC San Diego School of Medicine; head of Alzheimer’s Disease Cooperative Study; a joint program between the university and the National Institute on Aging.

Born: Sept. 14, 1954, in New York City

Residence: Solana Beach

Children: Ben, 29; Daniel, 27; and Sam, 17

Currents, the program he oversees at UC San Diego, is looking at one of the most promising therapies for Alzheimer’s: an experimental vaccine. If it works, it could be a game-changer for millions of people worldwide.

As for the future, Aisen says he hopes to continue his work for many years to come. ‘I still have a lot to learn about Alzheimer’s disease,’ he says. ‘And I think there’s a lot of hope for the future.’

Family fun: Disney raises ticket prices for its U.S. theme parks, with tickets to Walt Disney World breaking the $100 mark. Next stop, ATMLand.

Pension tension: Newly released emails show an accelerating clash between two trustees on the county pension board. Shouldn’t the investment returns be heating up instead of the tempers?

KARLA PETERSON & JOHN WILKENS

dr. paul aisen

positions: professor, department of neurosciences, uc san diego school of medicine; head of alzheimer’s disease cooperative study, a joint program between the university and the national institute on aging.

residence: solana beach.

children: ben, 29; daniel, 27; and sam, 17.

since 2007, it’s the umbrella group responsible for launching dozens of internationally known clinical studies, recruiting more minorities to participate in those tests and developing new diagnostic instruments.

that leadership position — along with aisen’s expertise in designing innovative studies of potential therapies — makes him one of the most important alzheimer’s researchers in the world. fellow scientists and pharmaceutical giants from various countries regularly seek his guidance.

currently, the program he oversees at uc san diego is looking at one of the most promising therapies for alzheimer’s: an experimental vaccine. if it works, it could be a game-changer for millions of people worldwide.

as for the future, aisen says he hopes to continue his work for many years to come. ‘i still have a lot to learn about alzheimer’s disease,’ he says. ‘and i think there’s a lot of hope for the future.’

family fun: disney raises ticket prices for its u.s. theme parks, with tickets to walt disney world breaking the $100 mark. next stop, atmland.

pension tension: newly released emails show an accelerating clash between two trustees on the county pension board. shouldn’t the investment returns be heating up instead of the tempers?

karla peterson & john wilkens

page 14

section sd

sun day

san diego news makers, ideas + opinions

what is a sport?

cheerleading, for all of the athleticism required of its participants, is not defined as a high school sport in california. a local lawmaker advocates for making it a sport while the cif’s head explains how an athletic activity becomes classified as a sport.

sunday march 1, 2015

winners & losers

your weekly news score card

winners

one pause: the san diego city council approves the dense 1.4 million-square-foot mixed-use project slated for carmel valley. hurry, neighbor, neighbor, neighbor, neighbor…

nathan odom: with a meal featuring fennel gratin and lamb chops, the 12-year-old from north park wins fox tv’s “masterchef junior.” he takes home $100,000 and a lifetime of gordon ramsay flashbacks.

turtle rescue: an endangered olive ridley sea turtle named solstice is rescued from cold washington waters and flown to seaworld san diego for recovery. here’s to warm welcomes.

good will: the old globe and the san diego public library win the bid to bring shakespeare’s rare first folio to town in 2016. it will be the only californiastop on the folio’s us tour. do not holdeth your applause.

publicsafety: crime falls 13.5 percent in san diego, continuing a 25-year downward trend. holy holdthe sirens, batman!

losers

downtown dreams: the metropolitan transit system says its complications could delay the opening of a downtown chargers stadium to 2025. slow and (un)steady won’t win this race.

badge warriors: badges for comic-con 2015 sold out in a record one hour — 30 minutes faster than last year’s sellout. super bumper.

traffic alarm: a new report from the san diego police department shows that a disproportionate number of latinos and blacks are pulled over in traffic stops. time to stop and think.

family fun: disney raises ticket prices for its u.s. theme parks, with tickets to walt disney world breaking the $100 mark. next stop, atmland.

pension tension: newly released emails show an accelerating clash between two trustees on the county pension board. shouldn’t the investment returns be heating up instead of the tempers?

karla peterson & john wilkens

positions: professor, department of neurosciences, uc san diego school of medicine; head of alzheimer’s disease cooperative study, a joint program between the university and the national institute on aging.

residence: solana beach.

children: ben, 29; daniel, 27; and sam, 17.

since 2007, it’s the umbrella group responsible for launching dozens of internationally known clinical studies, recruiting more minorities to participate in those tests and developing new diagnostic instruments.

that leadership position — along with aisen’s expertise in designing innovative studies of potential therapies — makes him one of the most important alzheimer’s researchers in the world. fellow scientists and pharmaceutical giants from various countries regularly seek his guidance.

currently, the program he oversees at uc san diego is looking at one of the most promising therapies for alzheimer’s: an experimental vaccine. if it works, it could be a game-changer for millions of people worldwide.

as for the future, aisen says he hopes to continue his work for many years to come. ‘i still have a lot to learn about alzheimer’s disease,’ he says. ‘and i think there’s a lot of hope for the future.’

family fun: disney raises ticket prices for its u.s. theme parks, with tickets to walt disney world breaking the $100 mark. next stop, atmland.

pension tension: newly released emails show an accelerating clash between two trustees on the county pension board. shouldn’t the investment returns be heating up instead of the tempers?

karla peterson & john wilkens
Milestones in Alzheimer’s research

1906

German neuropathologist Alois Alzheimer described the progressive brain disorder that bears his name.

1910

The U.S. government passes the old-age, survivors, and disability insurance program, a precursor to Social Security.

1935

The first Veterans Administration Hospital opens in the Bronx.

1963

Robert Reivich, a faculty member and pioneering researcher, established the repository at the Veterans Administration Hospital in New York. Researchers from the repository identified the initial cases of Alzheimer’s disease.

1968

Researchers develop a scale of cognitive function to diagnose dementia.

1974

Congress establishes the National Institute on Aging, as chief source of funding for Alzheimer’s research.

1975

Verbal cognitive test is identified as a standard diagnostic tool.

1976-80

Researchers identified pioneering clinics for Alzheimer’s disease in the United States, including the first national Alzheimer’s disease care program.

1977

Canadians’ first national Alzheimer’s disease care program is established.

1978

Alzheimer’s disease is recognized by the World Health Organization as a disease of the brain.

1979

Raymond Bartus (now a professor of medicine at the Albert Einstein College of Medicine) begins his Alzheimer’s career with a focus on behavioral changes.

1980

The early years of Alzheimer’s disease research are characterized by the identification of the amyloid plaques and tangles.

1981

The first Veterans Administration Hospital opens in the Bronx.

1982

Robert Katzman, a neurologist at the University of Pittsburgh Medical School, begins his Alzheimer’s career with a focus on behavioral changes.

1983

Robert Katzman and Glenner (now a professor of medicine at the Albert Einstein College of Medicine) begin their work on Alzheimer’s disease.

1985

The Alzheimer’s Association is formed.

1986

Researchers discovered the tau protein as an index component of tangles in the aging brain.

1987

Leon Thal (a chief of neurology at the Veterans Administration) published a landmark paper in the Journal of the American Medical Association, identifying the tau protein as an index component of tangles in the aging brain.

Alzheimer’s disease and the brain

Scans of a brain of someone with Alzheimer’s disease.

FROM SD1

San Diego is trying to answer one of the key questions facing re- searchers in Alzheimer’s disease: How do the brain plaques and tangles kill neurons, and how can they be stopped? The answers to these questions could be key opinion leaders, occasion- ally, I’m lucky enough to be in that position, but I decided that I was not ready to go into laboratory research. “The decision was very difficult, but I decided to go into medical practice.” That was in 1985, before the amyloid hypothesis had gained much support. But across the field, the amyloid hypothesis was gaining traction, Aisen’s says.

In 1991, the disease killed slightly more than 5,000 Americans. The figure grew to about 13,000 in 2010, and it is expected to reach about 11 million by 2050.

“The decision was very difficult, but I decided to go into medical practice,” Aisen says.

“In 1991, the disease killed slightly more than 5,000 Americans. The figure grew to about 13,000 in 2010, and it is expected to reach about 11 million by 2050.”

Alzheimer’s disease is a disease of the brain. The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.

The amyloid hypothesis is the current scientific consensus about the cause of Alzheimer’s disease.
THERAPIES FOR ALZHEIMER’S

BRADLEY J. FIRES • U-T

Although there’s still no cure for Alzheimer’s, new therapies appear to be helping some re-depressors achieve meaningful gains. A number of clinical research studies have shown that these agents may slow the progression of memory loss, and there is now a growing amount of evidence that some of these agents may also help to improve cognitive function. These studies suggest that some agents may be more effective than others, and there is a growing need for better ways to identify which agents will work best in individual patients. In addition, there is a growing need for better ways to measure the effects of these agents in order to determine which patients are likely to respond to them. The development of new therapies for Alzheimer’s disease is a major public health priority. The field is rapidly advancing, and there is a growing need for more research to determine how best to use these agents in clinical practice.

From the late ’70s through the late ’80s, we gradually learned that Alzheimer’s is a specific disease with an extremely high prevalence in this country and should be the focus of research and therapy.

Dr. Paul Aisen

As the Alzheimer’s Association recently noted, the disease is a major public health priority, with almost 5 million Americans currently living with the condition. The cost of caring for those with Alzheimer’s is enormous, and the disease is a major source of federal government spending. The disease is also a major source of stress and anxiety for families, caregivers, and the general public. There is a growing need for more research to better understand the disease, and there is a growing need for better ways to provide care for those living with Alzheimer’s. The development of new therapies for Alzheimer’s disease is a major public health priority, and there is a growing need for more research to better understand the disease and provide better care for those living with it.

THERAPIES FOR ALZHEIMER’S

BRADLEY J. FIRES • U-T

Although there’s still no cure for Alzheimer’s, new therapies appear to be helping some re-depressors achieve meaningful gains. A number of clinical research studies have shown that these agents may slow the progression of memory loss, and there is now a growing amount of evidence that some of these agents may also help to improve cognitive function. These studies suggest that some agents may be more effective than others, and there is a growing need for better ways to identify which agents will work best in individual patients. In addition, there is a growing need for better ways to measure the effects of these agents in order to determine which patients are likely to respond to them. The development of new therapies for Alzheimer’s disease is a major public health priority. The field is rapidly advancing, and there is a growing need for more research to determine how best to use these agents in clinical practice.

As the Alzheimer’s Association recently noted, the disease is a major public health priority, with almost 5 million Americans currently living with the condition. The cost of caring for those with Alzheimer’s is enormous, and the disease is a major source of federal government spending. The disease is also a major source of stress and anxiety for families, caregivers, and the general public. There is a growing need for more research to better understand the disease, and there is a growing need for better ways to provide care for those living with Alzheimer’s. The development of new therapies for Alzheimer’s disease is a major public health priority, and there is a growing need for more research to better understand the disease and provide better care for those living with it.

There are a number of different types of therapies that are currently being studied for Alzheimer’s disease. These include medications that target the underlying causes of the disease, as well as therapies that are designed to improve cognitive function and reduce the symptoms of the disease. There is a growing need for more research to better understand how these therapies work, and there is a growing need for better ways to measure the effects of these therapies in order to determine which patients are likely to benefit from them. The development of new therapies for Alzheimer’s disease is a major public health priority, and there is a growing need for more research to better understand the disease and provide better care for those living with it.

There are a number of different types of therapies that are currently being studied for Alzheimer’s disease. These include medications that target the underlying causes of the disease, as well as therapies that are designed to improve cognitive function and reduce the symptoms of the disease. There is a growing need for more research to better understand how these therapies work, and there is a growing need for better ways to measure the effects of these therapies in order to determine which patients are likely to benefit from them. The development of new therapies for Alzheimer’s disease is a major public health priority, and there is a growing need for more research to better understand the disease and provide better care for those living with it.

Therapies for Alzheimer’s

BRADLEY J. FIRES • U-T

Although there’s still no cure for Alzheimer’s, new therapies appear to be helping some re-depressors achieve meaningful gains. A number of clinical research studies have shown that these agents may slow the progression of memory loss, and there is now a growing amount of evidence that some of these agents may also help to improve cognitive function. These studies suggest that some agents may be more effective than others, and there is a growing need for better ways to identify which agents will work best in individual patients. In addition, there is a growing need for better ways to measure the effects of these agents in order to determine which patients are likely to respond to them. The development of new therapies for Alzheimer’s disease is a major public health priority. The field is rapidly advancing, and there is a growing need for more research to determine how best to use these agents in clinical practice.

As the Alzheimer’s Association recently noted, the disease is a major public health priority, with almost 5 million Americans currently living with the condition. The cost of caring for those with Alzheimer’s is enormous, and the disease is a major source of federal government spending. The disease is also a major source of stress and anxiety for families, caregivers, and the general public. There is a growing need for more research to better understand the disease, and there is a growing need for better ways to provide care for those living with Alzheimer’s. The development of new therapies for Alzheimer’s disease is a major public health priority, and there is a growing need for more research to better understand the disease and provide better care for those living with it.

There are a number of different types of therapies that are currently being studied for Alzheimer’s disease. These include medications that target the underlying causes of the disease, as well as therapies that are designed to improve cognitive function and reduce the symptoms of the disease. There is a growing need for more research to better understand how these therapies work, and there is a growing need for better ways to measure the effects of these therapies in order to determine which patients are likely to benefit from them. The development of new therapies for Alzheimer’s disease is a major public health priority, and there is a growing need for more research to better understand the disease and provide better care for those living with it.

There are a number of different types of therapies that are currently being studied for Alzheimer’s disease. These include medications that target the underlying causes of the disease, as well as therapies that are designed to improve cognitive function and reduce the symptoms of the disease. There is a growing need for more research to better understand how these therapies work, and there is a growing need for better ways to measure the effects of these therapies in order to determine which patients are likely to benefit from them. The development of new therapies for Alzheimer’s disease is a major public health priority, and there is a growing need for more research to better understand the disease and provide better care for those living with it.

Therapies for Alzheimer’s